Custom Space-Variant Waveplates

  • Custom space variant waveplates

Custom space-variant waveplates are space-variant retardance plates which enables tailored control of spatial polarization with retardance and predefined patterns of slow axis.


Production of custom space-variant waveplates for polarization conversion is based on unique laser nano-structuring technique developed by prof. Peter G. Kazansky group from Optoelectronics Research Centre at Southampton University.

Dedicated for polarization shaping applications:
  • Radial polarization
  • Azimuthal polarization
  • Custom polarization
  • Optical vortex generation
  • Flattop generation
Specifications of custom space-variant waveplates:
  • Custom-space variant fast axis and/or retardance patterns
  • Wavelength range from 400 nm to 2000 nm
  • Half-wave or quarte-wave converters available
  • Size from 1 mm to 20 mm
  • Transmission from 40% to 90% (wavelength dependent)

Space-variant waveplates fabrication is based on inscription of self-organized nanogratings inside fused silica glass using a femtosecond laser. Rapid prototyping enables adaptation of every element to the specific needs of end user (slow axis and retardance distribution, structure clear aperture, substrate shape and thickness) without high additional development costs.

Current technology allows fabrication of SVW with retardance from R = 200 nm to R = 1000 nm.  The wavelength range for which it is possible to fabricate λ/2 waveplates is λ = 400 nm to λ = 2 µm.


Beam intensity distribution after custom polarization converter at different incident polarization angles (left),polarization orientation in the beam (right)

soft aperture

Fig. 1 “Soft” aperture in cross polarized light

airy beam converter

Fig. 4 Airy beam converter in cross polarized light

fresnel lens

Fig. 2 Fresnel lens in cross polarized light


Fig. 3 Custom converter in cross polarized light

  1. Xiaohui Ling et al. “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence”, Light: Science & Applications (2015). doi:10.1038/lsa.2015.63
  2. Davit Hakobyan and Etienne Brasselet “Optical torque reversal and spin-orbit rotational Doppler shift experiments”, Optics Express, Vol. 23, Issue 24, pp. 31230-31239 (2015). doi: 10.1364/OE.23.031230
  3. Yongli He et al. “Higher-order laser mode converters with dielectric metasurfaces”, Optics Letters, Vol. 40, Issue 23, pp. 5506-5509 (2015). doi: 10.1364/OL.40.005506
  4. Min-Cheng Zhong et al. “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams”, Appl. Phys. Lett. 105, 181112 (2014). doi:
  5. Yougang Ke et al. “Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces”, (2015). doi:
  6. Yougang Ke et al. “Photonic spin filter with dielectric metasurfaces”, Optics Express Vol. 23, Issue 26, pp. 33079-33086 (2015). doi: 10.1364/OE.23.033079
  7. Yachao Liu et al. “Manipulating the spin-dependent splitting by geometric Doppler effect”, Optics Express Vol. 23, Issue 13, pp. 16682-16692, (2015). doi: 10.1364/OE.23.016682
  8. Yougang Ke et al. “Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens”, Appl. Phys. Lett. 108, 101102 (2016). doi:
  9. Yougang Ke et al. “Compact photonic spin filters”, Appl. Phys. Lett. 109, 181104 (2016). doi:

If you are interested in our product or have questions – feel free to contact us via contact form below:

Your Name: *

Your E-Mail: *

Company Name:

Your Message: *